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Rational Approximants Defined from 
Double Power Series 

By J. S. R. Chisholm 

Abstract. Rational approximants are defined from double power series in variables x 
and y, and it is shown that these approximants have the following properties: (i) they possess 
symmetry between x and y; (ii) they are in general unique; (iii) if x = 0 or y = 0, they 
reduce to diagonal Pad6 approximants; (iv) their definition is invariant under the group of 
transformations x = Au/(l - Bu), y = Av/(l - Cv) with A 5 0; (v) an approximant 
formed from the reciprocal series is the reciprocal of the corresponding original approx- 
imant. Possible variations, extensions and generalizations of these results are discussed. 

1. Introduction. When several terms of a power series 
co 

(1.1) f(z) = C'Z' 
j' =0 

are known, forming Pade approximants from the series is frequently an effective way 
of approximating the function f(z) represented by the series expansion. References to 
several general works on the subject are given ([1], [2], [3], [4]). The (m, n) approximant 

(1.2) fmn(Z) az / Ebz 

is defined by the formal identity 
n com 

(1.3) [z b 3z' L cZzz= Z aaza + o(Zm+n). 

In general, the (m + n + 1) linear equations obtained by equating powers of 1, 
z a zm~n in (1.3) define uniquely the ratios of { aa } and { b# }, and hence fm, n(z). The 
diagonal approximants {fmm(z)} have proved to be particularly powerful; their 
importance stems from certain invariance properties [5], the most important of which 
are the following: 

(1) If we substitute 

(1.4) z = A w/(1 - Bw) (A iz 0) 

in (1.1) and expand the denominator factors (1 - Bw)-7 by the binomial theorem to 
give a new series 

(1.5) g(w) E e, w', 
E=O 
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then the [m/m] Pade approximant g,,o, m(w) formed from (1.5) obeys 

(1.6) gmm(w) - fmm(Aw/(1 - Bw)). 

In other words, the formation of diagonal approximants is invariant under the group 
of homographic transformations defined by (1.4). 

(2) If the reciprocal of series (1.1) is 

(1.7) F (z) , d8z', 
8=0 

then the diagonal approximants to f`1(z) are given by 

(1.8) 1m m(Z) = [fm m(Z)] 

If we try to define analogous approximants from a double power series 

00 

(1.9) E ca,Px Y 

in variables x and y, it seems natural to assume that the numerators and denominators 
contain all terms up to a given order in x and y; for example, a [2/2] approximant of 
this type would contain terms 1, x, y, x2, xy and y2 in both numerator and denomina- 
tor. It is easy to see that no formal equation analogous to (1.3) gives the correct 
number of linear equations to determine the ratios of the coefficients in the approxi- 
mants. Gammel [6] has suggested using a minimization procedure to determine the 
"best possible" values of the coefficients, but it is not clear that Gammel's approxi- 
mants share the attractive properties of Pade approximants. 

The 2-variable approximants defined in the next section are generalisations of 
diagonal Pade approximants, and will be shown to have the following properties: 

(i) The approximants are symmetrical between x and y. 
(ii) The number of linear equations is equal to the number of ratios of coefficients 

to be determined, so that, in general, a unique approximant is defined. 
(iii) If x = 0 or y = 0, the approximants become diagonal Pade approximants in 

the other variable. 
(iv) The formation of the approximants from (1.9) is invariant under all trans- 

formations of the group 

Au Av 
(1.10) x = -B' 1- Cv (A ). 

(v) If 
00 

(1.11) E d axIy8 
7Y,8=0 

is the reciprocal of the series (1.9), then the reciprocal of an approximant defined from 
(1.9) is equal to the corresponding approximant defined from (1.11). 

Further, we shall see that these are the only approximants satisfying all these 
properties, and that the choice of the formal equality is a natural one, given the 
conditions (i)-(v). In Section 4, we shall discuss possible variants and generalizations 
of the new approximants. 
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2. Definition of the Diagonal Approximants. The approximants are defined to 
have a given maximum power in each variable, rather than to have given total maxi- 
mum power. The [m/m] approximant is thus of the form 

m / m 

(2 .1 ) AY, m( )_E a baox 0y' 
'u, V=0 ~0, r = 0 

Without loss of generality, we can normalise the series (1.9) by taking 

(2.2) C= 1; 

in general, this will allow us to choose 

(2.3) ao0 = boo= 1. 

In this paper, we shall not consider series (1.9) which are not "normal" in the Pade 
sense ([1], [4]). The [1/1] approximant, for example, is of the form 

(2.4) f1,1(x, y) = 1 + al0x + a0ly + allxy 
1 + bl0x + boly + bllxy 

with numerator and denominator both bilinear in x and y. The number of coefficients 
to be determined in fmm is, remembering (2.3), 

(2.5) 2[(m + 1)2 - 1] = 2m2 + 4m. 

The most natural extension of (1.3) is the formal equality 

(2.6) E bx xY i E Zco ax# = E auvx~y + O(X7Y2m-7y) 
ar=0 i ra,#=0 , i =0 

The last term in (2.6) indicates that coefficients of all terms of total order less than 
(2m + 1) are equated. Since (2.2) and (2.3) ensure that the zero order terms are equal, 
the number of equations is 

2m+ 1 

(2.7) E r = 2m2 + 3m, 
r=2 

which is m less than the number of unknowns (2.5). We therefore require m further 
equations; it is reasonable to obtain these conditions by equating coefficients in (2.6) 
of terms of the type 

(2.8) X 2m?1- 

of total order (2m + 1); there are (2m + 2) coefficients of this form. We first note 
that it is inconsistent to equate coefficients of X2m+ 1 and y2m+ 1 in (2.6); this is most 
easily seen by considering (2.6) with y = 0. It is clear that the equation then reduces to 
the usual definition of an [m/m] Pade approximant in the variable x, formed by equat- 
ing coefficients up to order x2 . In general, one cannot also match the coefficients of 
x2m? 1. We can therefore only consider the 2m terms of type (2.8) with y = 1, 2, 
2m. It seems that the only way of obtaining m linear conditions, symmetrical in x 
and y, is to equate the sums of coefficients of the m pairs of terms 

(2.9) x y2ml-y 2m 1-Y (Y = 1, 2, . , m). 
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The justification of this choice is that it defines approximants satisfying all the criteria 
(i)-(v). In Section 4 we shall discuss other possible choices of linear equations. 

If we define 

(2.10) and = by-- (= y > m or a > m), 

then the linear equations arising from (2.6) and from the pairs (2.9) are 

(2.11) Z E bIrcy -a7 8- = and (y, 8 = 0, 1, 2,**, 2m; I + a < 2m) 
a=0 T=0 

and 

(2.12) A A (bac-y -o, a- + bca - 7,-) = 0 
a=r T=O 

(y = 1, 2, m;, y; y + a = 2m + 1). 

Of the Eqs. (2.11), m(m + 2) define the coefficients {a,,} (e, 6 = 0, 1, *.. , m), 
excluding a0o. The remaining m(m + 1) equations, together with the m equations 
(2.12), define the m(m + 2) coefficients {boa,}, remembering that boo = 1. 

Equation (2.6) is equivalent to the set of Eqs. (2.11). To indicate the additional 
equalities (2.12), we amend (2.6) to give 

(2.13) [rAd byX cY.rj [ CaXY ] = i aX,,x'y + O[Xy2m- , S(Xzy2m+l-i)] 
TO' "= -a,#8=o 'U, =0 

the symbol "S" denoting symmetrisation. 
To exemplify the definition, we shall write down the equations determining f1l1. 

Equating coefficients of x, y, xy, x2 and y2 in (2.13) gives, remembering (2.2) and (2.3), 

blo + clo = alo, 

bol + co, = aol0 

(2.14) bl, + bloco, + bolclo + cl = all, 

c1oblo + C20 = 0, 

colbol + C02 = 0. 

These are the five equations (2.11). There is only one equation in the set (2.12), given 
by equating the sum of coefficients of x2y, xy2: 

(2.15) (c21 + c12) + (c11 + c02)b10 + (c1l + c20)bol + (co, + c1o)b11 = 0. 

We note that the equations defining a10, a01, blo and b01 are just the equations defining 
the two [1/1] Pade approximants given by putting y = 0 or x = 0 in (2.6). We have 
already noted that this property (iii) follows in general from (2.6) or (2.13) by putting 
x = 0 or y = 0. 

We further note that in (2.14) and (2.15), the highest order coefficients cl2 and c21 
occur only in the combination (c12 + c21). Generally, pairs of highest order coefficients 
(Ca,2m+ 1-ao C2m+1-a,a) occur only in the combinations 

(2.16) (Ca,2m+l-a + C2m-1-aa) 
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in Eqs. (2.12), and do not occur in Eqs. (2.1 1). This fact will be important in establish- 
ing property (v) of the approximants. 

3. Invariance Properties. Of the properties (i)-(v) enumerated at the end of 
Section 1, (i) and (ii) are satisfied directly by definition of the approximants, and (iii) 
was established in Section 2. We shall now establish the important invariance prop- 
erties (iv) and (v). 

The first step in establishing (iv) is to note that the substitution of (1.10) into the 
function (2.1) gives the rational function 

As Z a, V(Au)'(1 - Bu)m '(Av)v(l - Cv) 
gm.m(ua v) m 

Z bo&7r(Au)f(1 - Bu)m0- (Av)T(1 - Cv)m-T 

(3.1) o,r =0 

m 

=A , =0 - m 
Z bfvT u V 

0, r=O 

say. The highest powers of u and v in both the numerator and the denominator in 
(3.1) are um and vtm; gm,m is thus a function of the same form as fmi,m. If it can be shown 
that gm, m obeys the equation analogous to (2.11) and (2.12), but in variables u and v, 
it follows that grm, is the [m/m] approximant in these variables. The series from which 
this [m/m] approximant is defined is obtained by substituting (1.10) into (1.9), giving 

(3.2) ~~~~~~~~Au a Av (3.2) 
a,,6=0 

a:# - Bu/ 1 - Cv 

and then expanding the factors (1 - Bu)-a and (1 - Cv)- (a, if = 1, 2, ) by the 
binomial theorem; this procedure defines as many terms as desired of a formal power 
series in u, v. We denote this power series by 

00 

(3 .3) E cnuIvv 

It is clear that a particular coefficient Ca# in (3.2) only contributes to coefficients cl in 
(3.3) which have t _ a and X > j3. 

If we define a double series 

co in m _ 0 

(3.4) Z rAxY - E aA - [E b&rx jL E CaX Yj au, v =o a, v =o a, r=o a ,#=o 
Eqs. (2.11) and (2.12) can be expressed as 

(3.5) r', =0 0 + v < 2m) 

and 

(3.6) rM,2m+ 1_ + r2m+l_,AI = 0, y = (1, * , m). 

Remembering (3.1), we see that multiplying (3.4) by (1- Bu)m(1 - Cv)m gives 
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m 
Z apV(Au)Y(1 - Bu)r-`(Av)v(l - Cv)mnv 

A v=0 

m 

+ LzE ba7(Au)'(l - Bu)m- (Av)'(1 - Cv)m-] 
a" T= 0 

(3.7) [ E Ca(l B) p( -v)f] 
m Fm _F 

- XS aj,,u v I aU E cafiu 
a,#= -LBu I -o a V 

- Z rtvuavv, 
0 v=o 

say. By considering the coefficient of uvv in Eq. (3.7), it is not difficult to show that 

'& ( m + -y\(m - + 
(3.8) rMV = E E ( -- + 

(3.8) -Y~~~~~~~~~~~~~~~~~~=0 8=0 \ 7 ~ 

(,u < m, v < m) 

and that r V = 0 (,u > m or v > m, ,u + v < 2m). Using (3.5), it follows that 

(3.9) r<V = 0 (,u + v < 2m). 

Similarly, it follows that 

(3.10) rf = A2m+lr (,u +v= 2m + 1). 

Thus, (3.6) implies that 

(3.11) ru,2m+lu + r2m+i1_, = 0 (i = 1, * , m) 

Comparison of (3.9) and (3.11) with (3.5) and (3.6) establishes the invariance of these 
equations under transformations of the form (1.10). 

We now establish property (v) of Section 1. The reciprocal (1.11) of the double 
series (1.9) satisfies the formal equality 

(3.12) 1 E Ca#X aY#I13[7 dax'y6] 1, 
a ,#=o -y 8=0 

so that the coefficients {d,, } satisfy the "triangular" set of equations 

(3.13) E E I da = 0 (, + v ? 1). 
0=o 8=0 

If we formally multiply (3.4) by the series (1.11), we obtain 

-[, 
d7yj[ rA v = y] 

(3.14) = bax0yT L aAVx 
A yV ] d ax 7Y] 

a' T =0 A, P=0 -Y, 8=0 

-- Z r,<x'yy^. 
a r=0 
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Equations (3.5) therefore imply that 

(3.15) r" = 0 (,i + v < 2m) 

and that 

r= -r v (,u+v = 2m+ 1). 

So (3.6) gives 

(3.16) rff 2 
r+i,. 

+ r + 0. 

Equations (3.14), (3.15) and (3.16) show that the [m/m] approximant to the reciprocal 
series (1.11) is Um m]-. 

We have therefore shown that the two-variable approximants satisfy all the prop- 
erties (i)-(v). Property (iii) ensures that the approximants will be as powerful as Pade 
approximants in regions near x = 0 and y = 0. We expect, however, that property (iv) 
will ensure the usefulness of the approximants over large ranges of values of the 
complex variables x and y. The transformations of the group (1.10) do not allow 
relative changes of scale of x and y; otherwise it allows all independent transformations 
of the corresponding Pade invariance groups. This implies that the use of variables 
(x, Dy), with D 5 1, will define different approximants, since the relative weighting of 
terms in (2.12) will change. In practice, therefore, we should try to choose D so that 
the coefficients in the double series (1.9) have a variation which is roughly symmetrical 
between x and y. 

4. Variants and Generalisations. By relaxing one or more of the conditions 
(i)-(v), one can invent a number of variants of the approximants defined in Section 2. 
If the information we have about the coefficients { c, } is unsymmetrical between x 
and y, or if we require approximants giving a better representation in one variable than 
the other, we could use approximants which lack symmetry between x and y. Two 
ways of "breaking symmetry" are: 

(a) Using different maximum powers of x and y in the numerator and denominator 
polynomials; they could, for example, be linear in x and quadratic in y. 

(b) Making an unsymmetrical choice of coefficients which are equated. To give a 
simple example, we could replace (2.15) by 

C12 + C02b10 + cllbol + clObll, 

using only the coefficients of xy2; we do not then need to know c21. 
Another variant which could be considered is: 
(c) Using different order numerator and denominator polynomials, analogous to 

nondiagonal Pade approximants. 
The fact that the approximants are generalisations of diagonal Pade approximants 

suggests a wide variety of ways in which properties of Pade approximants might be 
extended. In particular, the following investigations suggest themselves: 

(d) A study of the numerical accuracy of the approximants to particular functions 
of two variables. 

(e) A study of the relation between the singularity structures of particular functions 
and their approximants. 

(f) A search for algorithms. 
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(g) Applications to double sequences and to sequences of series. 
(h) Studying the relation to the moment problem in two variables, and looking for 

an analogue to series of Stieltjes. 
(i) Extension of the theory to include double series whose coefficients {c<,} are 

square matrices. 
(j) Investigating the possibility of defining generalised approximants, analogous, 

for example, to Gammel-Baker approximants [7]. 
(k) Defining analogous approximants to series in three or more variables. 
The program of work involved in these suggested investigations is very large; one 

must therefore be selective in choosing a line of investigation. For this reason, we 
have concentrated in this paper upon rational approximants which possess all the 
properties (i)-(v). The most immediate task seems to be a numerical investigation of 
their accuracy and their singularity structure. 
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